If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x^2-28x=0
a = -12; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·(-12)·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*-12}=\frac{0}{-24} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*-12}=\frac{56}{-24} =-2+1/3 $
| 5x^2-80x+288=0 | | 4(3x+6)=-42+6 | | (4x+1)x(7x-3)=0 | | 2x+13=6x+17 | | 5x^2+80x+288=0 | | 10x+34x+14=0 | | 3x+42=2(3x+9) | | 9x-38=34 | | 2(x+4)-4x=14 | | 3u+7(u-8)=-36 | | 4(2x-2)-3(x+7)=4 | | 5x+6=3x+-15 | | 5x+6=3x+4.5 | | 5x+6=3x+2.5 | | 5x+6=-4x+21 | | 5x+-4=3x+21 | | 5x+6=-2x+21 | | 5x+6=-2+21 | | -4x+6=3x+21 | | 5x+6=-8x+21 | | 5x+6=5x+21 | | 5x+6=4x+21 | | 5x+6=3x+21 | | 3x+6=2x+21 | | 4x+6=2x+21 | | 6x+6=2x+21 | | X^4-(4*x)^3+(5*x)^2-4*x=0 | | x^2+10x.5=134 | | -2(×-1/7)=-3x | | x^2+10x+5=134 | | -9(x+3)+4(4x-4)=6(x-6)+12 | | X+4y=120 |